
Structured	 Abstracts	 	 	 	

Evidence-Based	 Software	 Engineering	 	 www.ebse.org.uk	

1	

A	 Note	 on	 Structured	 Abstracts	
This note briefly examines the role and history of abstracts in scientific and technical
papers, and why they are important for software engineering papers.

Roles	 of	 abstracts	
Although abstracts are now considered to be a standard element of scientific and
technological papers, their inclusion is (mostly) a relatively recent development. For
most scientific journals, the inclusion of abstracts only dates from the late 1950's
(Berkenkotter & Huckin,1995). The main exception to this is the journal Physical
Review, that adopted the practice of including abstracts in papers in 1920. The later
adoption elsewhere may well reflect the rapid expansion of published material in the
second half of the twentieth century, leading in turn to the development of abstracting
services, with this in turn encouraging researchers to adopt electronic forms of
searching for information.
Van der Tol (2001) identifies four main purposes for abstracts:

1. Enabling selection, whereby researchers and practitioners use the abstract to
help them decide whether an article merits further inspection.

2. Providing substitution for the contents of the full document, so that for some
readers the information they need is provided without it being necessary to
read the full article.

3. Providing an orientation function, in the form of a high-level structure that
assists with reading all or part of the article.

4. Assisting with retrieval, by including information in the abstract that is needed
by indexing services, in particular, by highlighting the relevant keywords.

Unfortunately for software engineering too few authors seem to be aware of any of
these roles!
The emergence of the evidence-based paradigm has in turn led to increased searching
of electronic databases of publications. For this, abstracts perform an important role
in terms of selection (making the decision about whether or not to include a primary
study in a review), along with some elements of orientation and retrieval when
performing data extraction (see the Guidelines provided on this site for more details
about these activities).
To illustrate the importance of the use of abstracts for selection, Table 1 summarises
the four-stage process that was followed in selecting the set of studies to be used in
the systematic literature review of agile methods reported in (Dybå & Dingsøyr,
2008). Deciding whether or not to include a paper is both an important task for a
secondary study as well as potentially time-consuming when it involves having to
read the papers themselves. We note that, when describing stage 3, the authors
reported that “we found that abstracts were of variable quality” as well as “some
abstracts were missing poor and/or misleading, and several gave little indication of
what was in the full article'”. So this suggests that better abstracts would have
considerably reduced the work involved in obtaining and checking the contents of the
remaining 270 papers, especially as the final number employed in the study was only
36.

Structured	 Abstracts	 	 	 	

Evidence-Based	 Software	 Engineering	 	 www.ebse.org.uk	

2	

Table	 1	 Inclusion-exclusion	 numbers	 from	 (Dybå& Dingsøyr,	 2008)	

Stage No. Task No. of studies
remaining

1 Searching journals & conferences using the keyword
adopted for the study

1996

2 Excluding studies on the basis of title alone 821

3 Excluding studies on the basis of the abstract 270

4 Appraising the studies on the basis of reading the full paper 36

Abstracts	 in	 Software	 Engineering	 papers	
As in the quotations above, various authors have comments on the poor quality of
many software engineering and computing abstracts, perhaps reflecting the relative
immaturity of the evidence-based paradigm in this field.
In (Budgen et al., 2008) we reported on a study investigating the use of structured
abstracts for software engineering papers. A ‘structured’ abstract is one that is based
around the use of a small number of headings, providing the author with guidance on
how to structure their summary. This form has been adopted in a number of
disciplines in order to increase the completeness and clarity of the information
provided in an abstract—and our study demonstrated that this was also true for
software engineering papers. Hence we strongly advocate their wider adoption.
In our study we also noted that many of the abstracts used in the study, and which
were taken from published studies, were incomplete in some way. So overall, the
impression is that software engineering authors tend to give low priority to the task of
writing an abstract and few give much consideration to how this might be used. The
practice adopted by some conferences of placing a limit on the length of an abstract
may also be unhelpful.
A subsequent (and as yet unpublished) study has also demonstrated that the use of
structured abstracts helps inexperienced authors to produce better abstracts.

References	
Berkenkotter C & Huckin T N (1995). Genre Knowledge in Disciplinary Communication,
Chapter 2, Erlbaum, N.J.

Budgen D, Kitchenham B A, Charters S C, Turner M, Brereton O P and Linkman S G (2008).
“Presenting Software Engineering Results using Structured Abstracts: A Randomised
Experiment”, Empirical Software Engineering, 13(4), 435-468.

Dybå T & Dingsøyr T (2008). “Empirical studies of agile software development. A
systematic review”, Information & Software Technology, 50, 833-859.
van der Tol, M (2001), “Abstracts as orientation tools in a modular electronic environment”,
Document Design, 2(1), 76-88.

