
Evidence-Based Software Engineering: Controlled (Laboratory) Experiments

Why and When?
The role for an experiment is to provide a means of investigating a cause & effect relationship (a
causal link) between some factor and the observed outcomes. Researchers are likely to begin with
a testable hypothesis of some form (e.g. smoking cigarettes causes lung cancer; code inspections
find more bugs than black box testing; …) and seek to perform suitably rigorous studies to ‘prove’
or ‘disprove’ it1. The design needs to isolate the key factor and its effect as far as possible, so that
the effects of changes to the factor can be identified and measured. (This isolation from context is
why we refer to ‘laboratory experiments’.)

Hence conducting an experiment is only sensible where there is
some model and an associated hypothesis that can be tested.
In a software engineering context we may have many possible
sources of bias because of the human element that is usually
involved, such as: prior experience; ‘learning’ effects; training
bias (eg the order in which things are taught); selection of
participants… Conducting an experiment can be challenging!

Planning & Designing an Experiment
Do not under-rate this one… As for any empirical study, should
begin by writing a protocol for the study, which addresses the following key issues:

• the research question(s) which should lead to a testable hypothesis
• the dependent and independent variables arising from the research question
• determine how the variables will be controlled (the experimental environment)
• select the context – how the study will be structured
• develop a measurement plan for collecting the data
• determine how the participants will be recruited and selected
• assess the internal and external threats to validity
• plan the analysis that we will undertake [covered in later lectures]

Again, it is essential to conduct a ‘dry run’ beforehand, using carefully chosen participants to get
effective feedback.

The hypothesis
Usually written as a prediction, e.g. “a falling body will accelerate at a uniform and standard rate”
and should be testable so that it can be ‘proved’ or ‘disproved’, which means that we also need a
null hypothesis that states that there are no real underlying trends (causality) and that any
differences observed are coincidental and can be ascribed to statistical fluctuations

Independent & dependent variables
The independent variable(s) will be associated with cause and should change as a result of the
activities of the investigator (e.g. number of errors ‘seeded’, length of an item of software, time
allocated to a task, the training provided, …). (Sometimes the only independent variable will be the
experimental treatment.) Using more than one makes analysis (and the experiment) more difficult.
The dependent variable is associated with effect and its value is expected to change as a result of
changes made to the independent variable. Measuring this is necessary in order to assess the
outcomes of the experiment. Examples might be time taken, quality of solution, order in which
tasks are completed, number completed,…

The controls
To provide a convincing demonstration of cause and effect, we need to minimise the effects of any
other factors that might influence the dependent variable. Some ways of doing this include:

1 Strictly, prove is a mathematical concept and an empirical study can only demonstrate. However, as
‘prove’ is used widely it is used here—but recognising the different meaning that it has in this context.

“A controlled experiment in
software engineering is a
randomised or quasi-experiment,
in which individuals or teams
(the study units) conduct one or
more software engineering tasks
for the sake of comparing
different populations, processes,
methods, techniques, languages
or tools (the treatments).”
(Sjøberg et al, 2005)

• eliminate the factor
• hold the factor constant
• use random selection of subjects
• use control groups (divide into two groups, and for the control group have no manipulation

of the independent variable so that any difference between the groups can be attributed to
the variable)

Also need to establish what the ‘baseline’ is (what are the control group doing) since it forms the
basis for comparison with the intervention. This may well be ill-defined (eg ‘existing practices’) and
it may also be difficult to control. In contrast, where participants are recipients of a treatment (as in
clinical medicine), then it is possible to perform randomised controlled trials (RCTs) that use
double blinding, by which neither the researcher nor the participant knows who is in which group,
but this is rarely practical in computing.

Experimental forms
An experiment uses a between subject design that involves randomly allocating each participant to
one of two groups, the ‘experimental group’ uses the intervention, while the ‘control group’
performs the task in the way they would have done before. A problem for SE is that it may be
difficult to prescribe how a control group should work. For example, in a study of pair programming
the intervention is well-defined, but the ‘control’ (solo programming) is not well-defined.

SE mainly uses quasi-experiments. These are used where it is not possible to randomise allocation
of participants to groups, perhaps because they need to possess particular skills, and take many
forms. One form commonly used in SE is a within subject design, which involves the participants
in performing sequential tasks whereby:

• each participant is involved in more than one treatment (task)
• order of treatment is randomised
• can be used to detect small effects but need to beware of ‘learning effects’ that might

interact with the experimental conditions
A within subject study may employ crossover forms to try to isolate learning effects, by which:
• group A gets intervention 1 followed by intervention 2
• group B gets intervention 2 followed by intervention 1

Observation/Measurement
Experiments often require both pre-test and post-test measurements of the dependent variable to
help determine cause and effect (‘before and after’). Examples of such measurements include:

• project and task data such as time to completion, cost (in whatever form)
• self-reported responses by which the participants fill in a questionnaire
• behaviour counts, such as how often a help system is invoked
• number of bugs found in a block of code

Experiments usually involve participants performing tasks that will generate the necessary
measures, such as debugging code, analysing a design structure, developing code via pair
programming,… So the experimental design also involves designing these tasks, together with
any necessary training material and the necessary data collection mechanisms. All of which
should really be addressed in the protocol.

Threats to validity
We need to have confidence in the findings from an experiment and hence need to assess its
validity. The design needs to consider many possible sources of internal threats such as:
imbalanced groups; history (events occurring between measures that affect the participants);
reactivity (participants may try to ‘help’ the experimenter); learning (such as when participants in
cross-over studies use experience gained in earlier treatments). For external validity (how well do
the findings apply outside the experiment itself), the ideal might be ‘replication studies’ taking place
in different places and (obviously) with different participants. Two common forms used are close
replication of a study, to give confidence in the results, and differentiated replication, to help
identify how widely the results apply.

